News

CRTD: Großhirnrinde auf Knopfdruck falten – Mechanismus der Hirnfaltung wie beim Menschen entschlüsselt

29.04.2013
Einem deutsch-spanischen Forscherteam ist es erstmals gelungen, in einem Säugetiergehirn nicht nur die Anzahl der Nervenzellen zu erhöhen, sondern einen sehr gering ausgeprägten falten- und furchenlosen Cortex (Großhirnrinde) zur Ausprägung von Falten zu bringen.

Dresden. Einem deutsch-spanischen Forscherteam ist es erstmals gelungen, in einem Säugetiergehirn nicht nur die Anzahl der Nervenzellen zu erhöhen, sondern einen sehr gering ausgeprägten falten- und furchenlosen Cortex (Großhirnrinde) zur Ausprägung von Falten zu bringen. Die Wissenschaftler um Dr. Federico Calegari vom DFG-Forschungszentrum für Regenerative Therapien Dresden – Exzellenzcluster der TU Dresden (CRTD) und Dr. Víctor Borrell vom Instituto de Neurociencias de Alicante und der Universidad Miguel Hernández haben einen Mechanismus entdeckt, der den Prozess der Faltung in Gang setzt und auch wieder stoppt. Die Falten und Furchen vergrößern die Gehirnoberfläche, damit automatisch die Anzahl der dort sitzenden Nervenzellen. Die Ergebnisse sind jetzt im Fachjournal „The EMBO Journal“ veröffentlicht worden (DOI: 10.1038/emboj.2013.96).

Wie sich im erwachsenen Mausgehirn das Potential an vermehrbaren Stammzellen erhöhen lässt, zeigte Federico Calegari bereits vor zwei Jahren. Gemeinsam mit Benedetta Artegiani hatte der Dresdner Stammzellforscher ein patentiertes Verfahren entwickelt, die Teilung von neuronalen Stammzellen im Gehirn gezielt zu beschleunigen und zu vermehren. Dafür erhöhten die Wissenschaftler die speziellen Proteinkomplexe CdK4 und cyclinD1. Sobald diese Proteingaben eingestellt wurden, hörten die Stammzellen auf, sich weiter zu teilen und bildeten Nervenzellen.

Das Mausgehirn unterscheidet sich in seiner Form von dem des Menschen. Das menschliche Gehirn ist an der Oberfläche mit vielen Falten, Furchen und Fissuren versehen, die Oberfläche von kleineren Säugetieren wie Mäusen hingegen ist eher glatt. Ein gefalteter Cortex bedeutet eine größere Oberfläche an genau dem Ort des Gehirns, an dem viele neuronale Stammzellen und Vorläufer der Nervenzellen sitzen, was letztlich auch die Anzahl an Nervenzellen erhöht.

Experimente am CRTD in Dresden zeigten, dass sich mit der Gabe der speziellen Proteinkomplexe während der Embryonalentwicklung der Mäuse zwar die Größe der ausgewachsenen Gehirne aufgrund der größeren Gehirnmasse mitsamt den Neuronen stark erhöhen ließ, jedoch kam es zu keiner Auffaltung des Cortex. Wie ist es im Laufe der Evolution dazu gekommen, dass sich beim Menschen Gehirnfaltungen ausgebildet haben? Könnte beispielsweise ein glattes Kleinsäugetiergehirn so manipuliert werden, das es Falten ausprägt, in denen mehr neuronale Stammzellen vorhanden sind als zuvor? Diese Frage beschäftigt Forscher weltweit.

In den vergangenen Jahren haben verschiedene Forschergruppen entdeckt, dass die Großhirnrinde aus mehreren Schichten besteht, in denen unterschiedliche neurale Vorläuferzellen mit verschiedenen Funktionen sitzen. Wieland Huttner vom Max-Planck-Institut für Molekulare Zellbiologie und Genetik (MPI-CBG) Dresden entdeckte 2010 in der äußeren Keimzone des Gehirns (Subventrikularzone) neue Stammzelltypen. Diese Vorläuferzellen der weiteren Schicht behalten über einen langen, dünnen Zellfortsatz Kontakt zur Basalmembran an der äußeren Oberfläche des sich entwickelnden Gehirns. Die Zellen besitzen Stammzelleigenschaften und können sich wiederholt teilen, somit neue Nervenzellen produzieren.

Genau diese Gehirnschicht ist im Gehirn von Mäusen nicht vorhanden, jedoch in Frettchen, an denen Dr. Víctor Borrell vom Instituto de Neurociencias de Alicante und der Universidad Miguel Hernández forscht. Frettchen besitzen im Gegensatz zu Mäusen bereits eine sehr gering ausgeprägt gefaltete Gehirnform. Die in Dresden entwickelten Verfahren hat Borrell in der publizierte Studie nun an Frettchen untersucht.

Um die Ausdehnung des Cortex massiv zu erhöhen, entwickelte die Arbeitsgruppe von Federico Calegari vorab eine Technik, die Konzentration der speziellen Proteinkomplexe CdK4 und cyclinD1 zu steigern. „Zu Beginn dachten wir, dass beim Mausgehirn eine Ausdehnung des Cortex in die Breite erzeugt werden müsste“, erläutert der Dresdner Stammzellforscher das Vorgehen. Das erwies sich jedoch als falsche Arbeitshypothese. Calegari weiter: „Wir mussten also eine größere Streckung der Cortexoberfläche in der Längsausdehnung erreichen, um die Wölbung zu erzielen. Die Experimente an Frettchen, die wir dann gemeinsam mit den spanischen Kollegen durchführten, zeigten uns, dass wir hier den richtigen Ansatz gefunden hatten.“

Mehr…

Quelle: Pressemitteilung des CRTD/DFG-Forschungszentrum für Regenerative Therapien Dresden vom 26.4.13